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Introduction

The formation of thin films due to the deposition of particles 
on a substrate allows the development of materials with important 
technological applications. By controlling the surface properties, 
one can control the properties of the material by shaping the sur-
faces with desired purposes. The study of the surface growth and 
its evolution allows the researcher to focus the investigation on 
the important parameters that determine the morphology skip-
ping the unnecessary details. This task is usually accomplished 
through the use of mathematical models, which simulate the 
growth of a thin film determining its thickness, surface rough-
ness, and porosity in the bulk.

Advanced studies in recent years allowed a deeper understand-
ing of the fundamental phenomena which govern the deposition 
of atoms or particles forming a thin film at nanoscale. The theo-
retical and computational models presented herein represent a 
powerful tool to study the growth of thin films and interfaces. 
Many models are quite simple due to the simple phenomena 
being modeled. On the other hand some of the models have very 
simple features and therefore deviate from the real deposition and 
growth of the film. Nevertheless these models can be seen as a 
good starting point for obtaining more accurate ones by adding 
ingredients in the model that are directly related to the experi-
mental growth process. It is usually necessary to combine dif-
ferent models (or even characteristics of a model) to get a better 
approximation of the experimental conditions.

New experimental techniques, such as sputtering or Molecular 
Beam Epitaxy (MBE), can provide suitable materials for medical 
applications. Thin and ultra-thin film coatings for stent devices 
are, perhaps, one of most remarkable examples of nanostructured 
biomaterials applied in medicine. From the theoretical point 
of view, physicists can apply the well-known tools of statistical 
mechanics along the computational techniques to describe new 
phenomena and provide understanding for these new materials.

In this work we present a brief introduction of theoretical 
concepts related to the surface growth and interface evolutions 
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The morphology of thin films has been extensively studied 
in the last years. The properties of a thin film are closely related 
to its microstructure, especially to its morphology and surface 
roughness. Optical reflectivity, conductivity, and porosity are 
characteristics that depend on the film structure. The knowl-
edge of atomistic details of the thin film growth process is 
useful for the development of new techniques and the control 
of thin films and new materials. Models of growth process are 
very powerful tools that can help researchers to predict and 
control physical, chemical, and mechanical properties. In this 
work we briefly summarize the theoretical models that have 
been used in the studies of thin films growth. By describing 
the deposition process of atoms/molecules on the surface of 
the substrate, one can study the evolution of the bulk and the 
surface roughness of a thin film. If an experimental growth 
process is appropriately described by a theoretical model (or 
even a combination of one or more different models), it can 
also provide indications to control the surface roughness and 
porosity of the film. Controlling the growth process one can 
obtain materials with a set of desired properties, namely tribo-
logical, porosity, and electrical ones. These characteristics are 
necessary for example, for hosting a solid lubricant on the sur-
face of the material. We believe that the models presented in 
this work can be very useful in understanding the mechanisms 
of control and adherence of electrodeposited films which are 
commonly used in medical applications such as stent devices. 
We also believe that the models can be helpful to the under-
standing surface problems related to the superficial defects in 
stents.
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and the most common models used in simulations. After pre-
senting the main theoretical concepts for mathematical modeling 
of a surface growth, some applications will be analyzed in real 
cases, comparing the results obtained by simulations with those 
obtained experimentally.

Theoretical Concepts

By adopting mathematical models as a tool to describe the 
deposition of a film, it is necessary to use some theoretical con-
cepts that allow the description of this process. The surface 
roughness, the fractal dimension of a surface, the height of a 
given position in the substrate, the porosity of the bulk in the 
film, and how these quantities may vary with time are the prin-
cipal properties related to a film growth process and, in many 
cases, they are interdependent.

Parameters of a growing surface
One can describe the height h(i,t) of a given position i on the 

surface as a function of time. To describe qualitatively the growth 
of the surface, it is necessary to look at the mean height  of 
the interface:1

 1)
	  

where L is the linear size of the network and d the dimensional-
ity of the system. The surface roughness is defined by the width 
of the formed interface, as the mean square fluctuation of the 
height. The roughness is a function of the linear size of the sys-
tem and of the time:

	 (2)

The surface roughness evolves in time with two distinct 
regimes depending on the type of film growth. At early stages of 
the deposition process, the roughness grows with time, following 
a power law.

For the initial times, one can describe the roughness as a 
power law in the form:

ω(L, t) ∼ t β (t << t
x
) (3)

The exponent β is called “growth exponent,” since character-
izes the growth features of a surface and the term t

x
 is defined as 

“crossover time,” representing the time required to change the 
growing regime. After the crossover time t

x
, this regime may turn 

into a new one, called saturation regime, in which the roughness 
reaches a saturation value and does not change in time. For the 
saturation regime the surface width increases as L increases, in 
the form:

ω
sat

 (L) ∼ Lα (t >> t
x
) (4)

where α is the “roughness exponent.” This exponent shows 
that the saturation of the roughness is not a local effect and can 
grow indefinitely for L → infinity.

There are few processes in which the surface roughness does 
not saturate and grows indefinitely with time. This characteris-
tic is due to the random processes and uncorrelated growth of 
the surface. This process is called random deposition and may 
describe a physicochemical process, such as the atomic layer 
deposition.2

The Random Deposition is the simplest growth model and it 
is very useful since one can write equations and calculate exactly 
the scaling exponents.

The crossover time (also called saturation time) depends on 
the linear size L of the system, in the form t

x
 ~Lz, where z is the 

third critical scaling exponent, called “dynamic exponent“. The 
scaling exponents α, β, and z are interconnected via the relation3 
[FAM85]:

 (5)
 

In some growth models it is possible to observe two (or more) 
different behaviors of the roughness for the growth regime, 
before the system reaches the saturation regime.4,5 In these cases, 
one or more exponents β can be found for t << t

x
, as can be seen 

in Figure 1.
Diffusion parameters
The “search” for the most convenient position (lowest height 

position or the energetically most favorable) on the surface occurs 
through the atom/molecule diffusion. The evolution of the sur-
face roughness during the deposition of a thin film depends 
strongly on the possibility of diffusion of atoms deposited on the 
surface. Diffusion plays an important role in the surface rough-
ness: by introducing correlations among neighboring sites, the 
surface roughness becomes smooth and eventually saturates. 
The “diffusion length,” i.e., the distance that an atom/molecule 
can move until reaching the final position, can be very large and 
depends on some factors during deposition, such as temperature 
and energy barriers. The growth can occur in the form of islands 
(Volts-Amperes) of layers (Frank-Van der Merwe), or in an 

Figure  1. Temporal evolution of the roughness for different network 
sizes.4,5
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intermediate form island-layer (Stranski-Krastanov). These pro-
cesses are represented in Figure 2, at different times of coverage 
of the substrate.

The growth form is determined by the energy of atom-surface 
interactions. The variation of surface energy is defined:

Δγ = γ
S
 − γ

A
 − γ

I
, (6)

where γ
S
 is the surface energy of the substrate, γ

A
 the energy 

of the adsorbed layer and γ
I
 is the tension of the interface. In the 

case of Δγ > 0 the growth occurs as layer by layer, since the sur-
face energy of the substrate favors the planar deposition and the 
next layer will grow only after complete coverage of the substrate. 
For the case of Δγ < 0, the tension of the interface increased, 
favoring the growth of the deposited material forming islands on 
the substrate. An intermediate situation can occur when, in the 
beginning of the process, Δγ > 0 condition favors the growth of 
layers up to a critical thickness, and then starts to form islands of 
material deposited on the substrate (model described by Stranski 
and Krastanov).

Models of Surface Growth

The models defined as “discrete” can be directly studied by 
numerical calculations and computer simulations. These models 
simplify the real conditions of growth and each one reflects a 
specific growth condition. The principal discrete models are the 
Random, the Ballistic, and the Solid on Solid (SOS).

Random deposition
This is the simplest model, with exact solution. In this model 

the roughness does not show saturation and grows indefinitely 
over time. The construction rule for this model is that each par-
ticle is deposited in a random place of a network of size L, occu-
pying the position immediately above the surface at the site, as 
shown in Figure 3.

In this model the interface has no formation of pores in the 
volume. A way to represent the temporal evolution of the interface 
is to associate a stochastic equation to it. The variation of height 
h(x,t) can represent statistical characteristics of the interface:

 (7)
 

 
Φ(x,t) is the number of particles per unit time that is aggregated 
at position x and time t. The term Φ(x,t), due to random fea-
ture can be represented as a sum of two terms, and Equation 7 
becomes:

 (8)

Figure 2. Different modes of thin film growth. (A) Growth in islands, (B) Growth in mono-layers and (C) mix growth of islands-layers.

Figure 3. Rule deposition in the random model.
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F is the average number of particles per unit time added to 
the substrate at position x and η(x,t) represents a “noise,” the 
random fluctuation of this process, without spatial correlation 
on the substrate:

 (9)
 

 
The second moment of this noise is:

 
(10) 
 
 

in order to indicate no correlation between space 
and time. Integrating Equation 8 in time:

 	(11)
 

 
The average height of the interface becomes:

< h(x,t) > = Ft 	(12)
Squaring Equation 11:
< h2(x,t) > = F2t2 + Ct (13)
The interface width is so w2(t) = Ct, and so:

(14)
 

From Equation 3, β = 1/2.
This model presented the condition of no roughness growth 

saturation. Generally, this is not the real condition of growth 
of a film, and needs to be improved; generally, the atoms/par-
ticles forming a film have a certain freedom of movement on the 
surface, so random models with surface relaxation present more 
appropriate conditions to describing the particles deposition with 
superficial diffusion.

Random deposition model with surface relaxation: 
Edwards-Wilkinson equation

To approximate the random model to a real condition, a term 
is added to include the mobility of atoms or particles arriving on 
a surface; this term represents the spatial correlation between 
the sites where the particles deposit and the first neighboring 
sites. This correlation determines the saturation to a maximum 
value of the roughness. Once deposited, the particle “demand,” 
among neighboring sites, that one of smaller height, as shown 
in Figure 4.

If these sites have the same height, the particle is randomly 
placed, or in the initial site or in one of its first neighbors. The 
model has no exact solution, contrary to what happens in the 
random model, but it is possible to associate with the model a 
stochastic differential equation. From this equation and using 
symmetry arguments, it is possible to define the exponents of 
this model of growth. Also this model, as the random deposition 
model, does not show porosity in the deposited film.

The differential equation which represents the condition of 
deposition is:

 (14)
 

 
and G(h,x,t) in this case also depends on the height h due to the 
fact that the film has a roughness maximum height then depends 
upon the surface; the dependence on x position is due to the spa-
tial correlation between the site of deposition and neighboring 
sites. The symmetry arguments considered1 define the deposition 
conditions such as:

(1) Temporal invariance: T → t + dt
This requirement states that G = G(h, x).
(2) Translational invariance (growth direction): h → h + δh.
To satisfy this invariance, it is necessary that G = G(Ñhn,x), 

…. Δhn since h is invariant against this translation.
(3) Translational invariance (in the direction orthogonal to 

growth): x → x + δx. In this case G = G(Ñhn).
(4) Inversion’s and rotation’s symmetry around the direction 

of growth: to satisfy this condition, is not allowed the presence 
of the derivatives terms of odd order, so that G = G(Ñ2Kh), or G 
= G(∇ 2K+1h) 2l.

(5) Symmetry up/down, h → - h.
With these conditions of symmetry, the equation that 

describes the model becomes a stochastic form equation: 

 

(15)

Figure  4. Dynamic of random deposition of the particles, with surface 
relaxation.
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The higher orders terms can be unconsidered, provided the 
hydrodynamic properties of scale growth surface. The equation 
then becomes:

 (15)
 

This is the Edwards–
Wilkinson equation.6 The term ν∇ 2h is the surface tension and 
the term

  
 

is the noise (“white noise”). From this equation can be deter-
mined the stochastic growth exponents; calculating the Fourier 
transform of Equation 15 is obtained the correlation func-
tion between the points of the surface, and finally the inverse 
transform is calculated, obtaining the values of the exponents 
growth:6,3

α = (2-d)/2; β = (2 – d)/4; z = 2 [EW]. (16)
Model of ballistic deposition
The ballistic deposition is the simplest model that presents 

porosity. This model also includes correlation between more 
distant neighbors; the particles are deposited randomly on the 
surface and are correlated with any site that presents the first con-
tact with the interface. That condition enables the formation of 
voids, or porosity, inducing a porous structure in the film during 
its formation because the interface can also grow tangentially to 
the surface of the initial substrate. The roughness evolves, after 
an initial time t

x
, to saturation, and in this model the growth 

exponents are α »0:50 and β »0:33 for the one-dimensional con-
dition, d = 1. The parameter d represents the dimension of the 
surface. The stochastic differential equation which represents 
the growth of the film for the BM is the equation developed by 
Kardar, Parisi, and Zhang, discussed in the next paragraph.

Equation Kardar-Parisi-Zhang (KPZ)
Kardar, Parisi, and Zhang proposed an analytical treatment 

to study the vapor phase deposition of thin films,9 adding to the 
EW equation a not linear term; this approach has been used in 
other models of deposition and formation of a thin films. The 
KPZ equation is obtained by using symmetry conditions, thus 
determining the exact values ​​of scaling exponents α and β. To 
build the KPZ equation it is maintained a characteristic obtained 
in the ballistic deposition model, i.e., the lateral growth of film 
due to aggregation of the particles arriving to the substrate in 
their first contact. This is represented in Figure 5; the term δh 
is along the growth direction and the term υδt normal to the 
interface.

And then:

 (17)
 

 
where Δ = υ tgδt. Since  ∇ h  < < 1, is possible to expand only 
up to second order:

 (18)
 

 
 

The nonlinear term (∇ h)2 represents the lateral growth of 
interface.

Adding this term to equation EW, we have:

 (19)
 

 
known as KPZ equation; the first term describes the relaxation at 
the interface due to surface tension v and the last term represents 
the noise, without correlations in space and time.

This equation shows some properties of symmetry, but this 
symmetry is broken due to existence of a driving force F caus-
ing a film growth perpendicularly to the interface, generating 
a lateral component to direction of growing film. To determine 
the growth exponent associated to the KPZ equation is utilized 
the renormalization group theory, which represents an extremely 
useful tool in a large number of applications. For one-dimen-
sional systems, the scaling exponents associated with the KPZ 
equation can be determined exactly. In this case, we have:

 (19)
 

 
The renormalization group provides exact solution for the scal-
ing exponents only for the one-dimensional system. For higher 
dimensions, numerical simulations of this nonlinear model have 
provided increasingly accurate values ​​for the scaling exponents, 
depending on the improvement in computational processing.

There are a number of phenomena described in terms of a 
nonlinear theory, as which that describes the ballistic deposition. 
As example, models that can generate porosity have been exten-
sively studied, with small variations from the standard ballistic 

Figure 5. Origin of the nonlinear term in the KPZ equation.
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deposition model and with improving accordance to real systems, 
being interesting in technological applications.

Model solid-on-solid (SOS)
This model provides some limiting conditions in previous 

models, necessary when some measures (h[i,t, ...]) have exces-
sively large values. Such corrections were so applied in SOS mod-
els, where some boundary conditions allow minimizing the need 
for corrections of scale. In models SOS, for example, is consid-
ered a single line interfacing, which limits the difference in height 
between neighboring sites. The best known model is called RSOS 
(restricted solid-on-solid),1 where the height of growth between 
neighboring sites is incremented by only one unit, so that |Δh| = 
0,1.

Applications of the Models

Control of thickness, surface, roughness, and porosity of the 
growing films

In recent years is improving the interest on thin film’s models 
that could correlate its thickness, roughness, and porosity. The 
correlation between different factors depends, for example, on 
temperature and on the rate of deposition of atoms forming a 
film and these parameters influence directly the surface diffu-
sion.7 In reference 8 is shown a procedure to better control these 
parameters by controlling the deposition rate.

The simulation method of Kinetic Monte Carlo (KMC) is 
effective to simulate the deposition of a thin film in these condi-
tions. First the method is generally based on the approximations 
obtained by the SOS, which provides approximate description of 

the evolution of a film’s microstructure, providing feedback to 
implement the equation that describe the evolution of the surface 
roughness of the deposited film. This model includes the pro-
cesses of adsorption and migration of atoms on the surface, which 
defines the surface roughness during the film formation (Fig. 6).

The migration process follows a behavior described by an 
Arrhenius equation:10

 (7)
 

 
where ν

0
 represents the pre-exponent factor, n

i
 is the number of 

the nearest neighbors of the ith particle and can take the val-
ues of two to five (r

m,i
 is zero when n

i
 = 6 since this particle is 

fully surrounded by other particles and cannot migrate), E
0
 is 

the contribution to the activation energy barrier from each near-
est neighbor, k

B
 is Boltzmann’s constant and T is the substrate 

temperature of the thin film.
The representation of the porosity of the film is given by the 

ratio of sites occupation (SOR):

 
 

N is the total number of particles deposited in the crystal lattice, 
L is the number of deposition sites of the network and H repre-
sents the number of the deposited layers.

Figure 6. (A) Deposition process in growing a film in two-dimensional triangular lattice. The measure A is the diameter of particles, so La represents the 
lateral extent of the network. (B) Layout of adsorption and relaxation of the incident particle (A); (B) is the first particle observed by A on the surface,  
(C) is the nearest vacancy and (D) is the site where the atom A relaxes.10
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Using an Edwards–Wilkinson type equation, is defined the 
dynamic model of surface’s height h(t) and of SOR of the film, 
to preset roughness by manipulating the deposition rate (Fig. 7).

This simulation shows that the need for minimum film thick-
ness with limited roughness would require a limitation in deposi-
tion rate, affecting the possible values ​​of porosity in the film.

A subsequent study conducted to describe the interdependence 
between surface roughness, slope of the surface in the process of 
migration of particles during deposition and size of the surface 
network was performed11 in order to improve the control of the 
deposition parameters for simulating the growth of thin films on 
surfaces of silicon solar cells. The application of mathematical 
models in this case is essential for contributing to increase the 
efficiency of solar energy conversion. The average surface rough-
ness and slope influence the rate of absorption by the semicon-
ductor surface layers, of the light incident on the surface. The two 
types of models more used are the KMC model and the models 

of stochastic differential equations (SDE); KMC is based on pre-
defined rules on a microscopic scale, while the SDE models also 
use experimental data of processing; however only SDE models 
provide a description which enables the feedback of experimental 
results, allowing the controlling of the surface roughness, poros-
ity, and thickness of thin films.

The basis for defining the simulation models is the dynam-
ics of the atoms / particles deposition on the surface, described 
trough two main models, the model RDSR (Random Deposition 
with Surface Relaxation) and the model that reproduces the 
migration of the particles surface; these dynamics are shown in 
Figure  8. The base of the models is the behavior SOS. These 
models contribute to controlling the deposited film for large-
scale surface.

The simultaneous control of surface roughness and mean slope 
of the surface is critical to optimize the surface reflectance and 
transmittance,12 which is a key factor to improve the efficiency of 

Figure 7. (A) Quadratic roughness (solid line) and film thickness (dashed - dotted line); roughness control for the minimum desired film thickness. (B) 
Simultaneous adjustment in thickness, surface roughness and porosity.10

Figure 8. Model of deposition, relaxation and immediate migration of the particles (A) 1D model, (B) 2D Model.11



e28871-8	 Biomatter	V olume 4 

photovoltaic solar cells; in fact, the scattering of light at the sur-
face is directly correlated with absorption of light by the surface 
of the cells (Fig. 9).

The dynamic of evolution of the surface can be described by 
an equation of Edward–Wilkinson type, which is a stochastic 
equation depicting the evolution of a surface growing as a func-
tion of the experimental parameters. This study is performed 
performing a controlled deposition rate by varying the surface 
temperature as a control parameter. The model allowed the 
simultaneous control of roughness, average slope of the surface, 
and consequently the possibility of depositing the film with the 
default values ​​of these parameters to optimize the reflectance and 
transmittance of the surface of the solar cell.

Another important application of thin film growth models is 
to control the deposition and to better define the structural prop-
erties of a DLC film.13 In this case the optimal control parameter 
is the energy of the incident particle to substrate. This determines 
the density of the film, the residual compressive strain and the 

Figure 9. Typical configuration of the solar cell composed of thin films 
with pin structure, the surface layer of TCO.

Figure 10. Evolution of the microstructure of the DLC film as a function of energy deposition.13
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fraction of sp
3
 bonds determining the fraction of ratio diamond 

/graphite in the film, that define the properties of the film of 
DLC such as hardness, low friction coefficient, superior optical 
properties, and good inertia chemistry. The residual strength is a 
problem because it reduces the adhesion of the film, essential in 
many tribological applications. With the simulation it is possible 
to control the microstructure of the DLC, improving the adhe-
sion of the film on the substrate, among other factors (Fig. 10).

The mobility of the surface atoms incident shows depen-
dence on the energy of deposition; the atoms undergo adsorp-
tion, reflection by the surface, or implantation depending on this 
energy. This determines the fraction of sp

3
 bonds, influencing 

the DLC film quality; adsorption and reflection of atoms is det-
rimental to the quality of the film, reducing the fraction of sp

3
 

binding. Mathematical modeling of this type of surface growing 
can help to define the parameters during the formation of DLC 
film improving the performance in tribological applications 
and eventually helping to control the porosity of the DLC film. 
Figure 10 shows the simulation with the formation of peer- Line 
(point- line -net) of carbon atoms, implanted in the superficial 
network. The implantation of the atoms defines the rearrange-
ment of the crystal structure, characterizing the DLC film qual-
ity (Fig. 11).13

A carbon film, as the DLC or the ta-C (tetrahedral amorphous 
carbon), the toughest among the amorphous DLC, can form in 
conditions not direct dependent from high temperature and pres-
sure, indicating the existence of other conditions that enable the 
formation of diamond, DLC or ta-C. There are already quantum 
models of electronic activation that determines the rearrange-
ment of atoms, which leads to the formation of these materials 
without the need for high temperature and pressure, which was 
confirmed by Raman characterization.14

The study of the crystalline structure of these materials by 
means of quantum models may be accompanied by mathematical 
modeling, which could set the growth’s parameters compatible 

with the specific conditions of carbonaceous materials films. The 
construction of computational models will facilitate the control 
of the growth of DLC or ta-C with closed models created from 
the processing conditions (P, T, atmosphere etc).

Applications to biomaterials
The understanding of stochastic process related to surface 

growth creates the possibility of developing thin film devices 
with desired properties for technological and medical applica-
tions, such as the stent devices. Besides the applications in control 
of thickness, surface roughness and porosity of the films, the con-
trol of the coating process and of the adherence of electrodepos-
ited films used in stent devices is crucial to keep the mechanical 
properties.

One can focus the attention on two main issues in these 
devices: (1) the deterioration of the material caused by ruptures 
generated due fatigue-crack growth and corrosion phenomena, 
and (2) the biomaterial encrustation on the devices. The fatigue 
due to tens of millions of loading cycles may result in fracture 
or even failures of the stents. For many materials, fatigue-crack 
growth and fracture toughness is well documented15 and still 
unknown. In other stent applications, such as ureteral stents, the 
long-term use of the material may lead the device to the problem 
of biomaterial (microbial biofilm) encrustation.

Despite the large amount of experimental studies related to 
in vivo and in vitro stent devices, only few theoretical studies 
have been proposed and none have focused on the theoretical 
analysis of the surface properties of these materials.16 The surface 
roughness for different coating surfaces of materials used in stent 
devices have been experimentally analyzed in some studies.17 
However, theoretical approaches and computational techniques 
to simulate and analyze materials, extensively used in physics and 
materials science, have not been applied. Due to the reduced costs 
and potential applications in the development of new materials, 
thin films simulations can be extensively employed in biomateri-
als analysis.

Figure 11. Variation in the initial growth of the film with the incident energy of 70 eV/atom. The blue dots represent atoms of the substrate, the red dots 
deposited atoms.13
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In the case of fatigue-crack growth and fractures, the use of 
computational growth models can mimic the fracture in the 
material and provide information about long-term integrity of 
the stents. Some experiments on ruptures describe the fractured 
material in terms of self-similar concepts and this rupture can 
be understood in terms of directed polymers in random media. 
Directed polymers in random media are usually mapped by the 
KPZ equation, which provides theoretical understanding of the 
surface.1

A nonlinear differential equation, distinct from the KPZ equa-
tion, takes into account nonlinear effects due to the chemical 
potential, such as surface diffusion. This equation was originally 
proposed by Lai and Das Sarma18 motivated by MBE process at 
high temperature; in this condition the surface diffusion plays an 
important role in the growing process. This equation,

 (8)
 

 
takes into account the surface diffusion and may represent a sim-
plified model for an ideal MBE growth, as pointed out by Lai and 
Das Sarma. The nonlinear term 

  
 
 

can be interpreted, geometrically, as a segment of the surface as 
one can see in Figure 12, this equation8 exhibits a conserved 
dynamic and non-conservative noise and it is usually represented 
by symbol NCN4 (nonlinear conservative dynamics, non-con-
servatives noise).1 By the Renormalization Group analysis, this 
equation can be exactly solved and, for a fractal dimension d = 2, 
the exponents are α = 2/3, β = 1/5 and z = 10/3. One can even 

consider an extension of the KPZ Equation 8 that is a most gen-
eral equation, namely,

  

(9)
Equation 9 takes into account relaxation mechanisms, lat-

eral growth, surface diffusion, and desorption. A mathematical 
model described by this equation can be the starting point for the 
study of ultrathin films coatings with complex characteristics, 
such as porosity and pinholes, resulting from the process of film 
growth.19 Regarding to medical applications of surface coatings, 
as stent coatings19 we believe that this equation can mimic the 
process and, in principle, be useful to the study and improvement 
of this class of surface growth. Since this equation have exact 
exponents only for the one-dimensional case, further numerical 
analysis and simulations are needed to describe accurately these 
processes.

The encrustation of biomaterials on the stent, mostly related 
to the ureteral use but also occurring due to formation of thin 
films due to platelet adhesion, is the most directly application 
of the theoretical surface analysis. Image analysis using SEM 
and AFM provides high quality topological informations of the 
surface roughness on several different coating materials. By the 
knowledge of the surface exponents, as seen in the second chapter 
of this paper, it’s possible to characterize the theoretical model of 
surface growth, at least the closest one to the specific problem. 
Once the surface is classified into a known model and belongs 
to a universality class of problems, one can run simulations and 
predict many properties of the surface and, consequently, of the 
stent device.

Conclusions and Future Developments

This paper is a quick review of simulation results for param-
eter control of thin film deposition. The requirement to control 
the properties of the deposited films, such as roughness, porosity 
and thickness of the film, indicate the great importance to con-
trol the growth surface process. The use of computer simulation 
models is a method increasingly useful for controlled processes, 
requiring further development to direct methods and processes 
for thin film deposition.

The second part of this work will be developed in the applica-
tion of theoretical models to control the growth and adherence 
of electrodeposited films used in stent devices; the models will be 
helpful to resolve the problem of superficial defects evidenced in 
the characterization of stents.19

At the same time, the models will be applied in study of depo-
sition of magnetic films, DLC films with optical and tribological 
properties and to control the properties of TOC films used in 
solar cells. The models will be used also to better control of nano-
structured films as graphene layer.

Figure 12. Segment of the surface, adapted from reference 18.
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